Effect of C-Terminal Residues of Aβ on Copper Binding Affinity, Structural Conversion and Aggregation
نویسندگان
چکیده
Many properties of Aβ such as toxicity, aggregation and ROS formation are modulated by Cu2+. Previously, the coordination configuration and interaction of Cu2+ with the Aβ N-terminus has been extensively studied. However, the effect of Aβ C-terminal residues on related properties is still unclear. In the present study, several C-terminus-truncated Aβ peptides, including Aβ1-40, Aβ1-35, Aβ1-29, Aβ1-24 and Aβ1-16, were synthesized to characterize the effect of Aβ C-terminal residues on Cu2+ binding affinity, structure, aggregation ability and ROS formation. Results show that the Aβ C-terminal residues have effect on Cu2+ binding affinity, aggregation ability and inhibitory ability of ROS formation. Compared to the key residues responsible for Aβ aggregation and structure in the absence of Cu2+, it is more likely that residues 36-40, rather than residues 17-21 and 30-35, play a key role on the related properties of Aβ in the presence of Cu2+.
منابع مشابه
Molecular Dynamics and Molecular Docking Studies on the Interaction between Four Tetrahydroxy Derivatives of Polyphenyls and Beta Amyloid
Interactions of 3,3',4,4'-tetrahydroxybiphenyl (BPT) and three isomeric 3,3",4,4"-tetrahydroxyterphenyls (OTT, MTT, PTT) with Alzheimer’s amyloid-β peptide (Aβ) were studied by molecular dynamics simulation and molecular docking. Structural parameters such as Root-mean-square derivations (RMSD), radial distribution function (RDF), helix percentage and other physical parameters were obtained. Th...
متن کاملEffect of Copper and Zinc on the Single Molecule Self-Affinity of Alzheimer’s Amyloid-β Peptides
The presence of trace concentrations of metallic ions, such as copper and zinc, has previously been shown to drastically increase the aggregation rate and neurotoxicity of amyloid-β (Aβ), the peptide implicated in Alzheimer's disease (AD). The mechanism of why copper and zinc accelerate Aβ aggregation is poorly understood. In this work, we use single molecule force spectroscopy (SMFS) to probe ...
متن کاملThe C-Terminal Threonine of Aβ43 Nucleates Toxic Aggregation via Structural and Dynamical Changes in Monomers and Protofibrils
Recent studies suggest that deposition of amyloid β (Aβ) into oligomeric aggregates and fibrils, hallmarks of Alzheimer's disease, may be initiated by the aggregation of Aβ species other than the well-studied 40- and 42-residue forms, Aβ40 and Aβ42, respectively. Here we report on key structural, dynamic, and aggregation kinetic parameters of Aβ43, extended by a single threonine at the C-termin...
متن کاملEffect of zinc binding on β-amyloid structure and dynamics: implications for Aβ aggregation.
Assembly of β-amyloid (Aβ) peptide into toxic oligomers is widely believed to initiate Alzheimer's disease pathogenesis. Under in vitro physiological conditions, zinc (Zn(II)) can bind to Aβ and redirect its assembly from amyloid fibrillar toward less toxic amorphous aggregation. Propensity of Aβ to go toward a specific form of aggregate state is determined by structural and dynamical propertie...
متن کاملThe role of His-50 of α-synuclein in binding Cu(II): pH dependence, speciation, thermodynamics and structure.
Copper interaction with alpha synuclein (αS) has been shown to accelerate aggregation and oligomerization of the protein. Three different αS copper binding domains have been proposed: (i) the N-terminal residues (1-9) that represent the minimal copper binding domain; (ii) the His-50 imidazole and (iii) the Asp and Glu residues within the acidic C-terminal domain. The copper coordination at the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2014